MRXBOX95AB-WMI
Mechanical Ventilation Unit with Heat Recovery, Integral Frost Protection & Summer Bypass
Installation and Maintenance

1.0 Introduction

The unit must remain switched on at all times to maintain ventilation within the dwelling. Turning the unit off will cause long term damage to the unit and building fabric. This appliance is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning the use of the appliance by a person for their safety. Children should be supervised so that they do not play with the appliance.

The unit is fitted with two independent fans. Each fan has full speed control for background and boost ventilation rates. To recover heat from the extract air the heat exchanger block is utilised. The heat exchanger can recover up to 95% of the normally wasted heat.

Integral automatic summer bypass - The bypass damper shall open automatically via a wax actuator allowing the air to bypass the heat exchanger to deliver fresh filtered air during the warmer months.

2.0 Installation

Installation must be carried out by competent personnel in accordance with the appropriate authority and conforming to all statutory governing regulations. All mains wiring must be in accordance with the current I.E.E. Regulations, or the appropriate standards. Ensure that the mains supply (Voltage, Frequency and Phase) complies with the rating label.

Please note a clear working space is required around the installed unit to allow the cover to be removed and provide sufficient access for maintenance such as filter change. Please allow a minimum of 350mm in front of the unit.

The fan must be installed indoors, on a suitable wall away from direct sources of frost, heat, water spray or moisture generation. For a vibration-free result the unit must be mounted to a solid wall.

The unit is designed for wall mounting only via a patress.
1. One part of the mounting bracket should be offered up to the wall, ensuring it’s located horizontally. Mark the fixing points through the pre drilled holes in the bracket and install with screws (by others), ensuring the interlock side is at the top, fig. 2.
2. Fix the remaining part of the bracket to the unit using the M5 screws ensuring the interlock side is at the bottom, fig. 3a.
3. Install the unit on the wall by ensuring the bracket on the unit interlocks over the wall mounted bracket (fig. 3b).

Note: Care must be taken to ensure the unit is installed true in all 3 dimensions. Failure to do so may result in overflow from the internal condensation drip tray.

Figure 2. Fixing the mounting bracket to the wall via a patress.

Figure 3a. Fixing the mounting bracket to the rear of unit.

Figure 3b. Mounting the unit on the wall mounted bracket.

Figure 4. Typical example of a cupboard mounted unit on a patress using the bracket.

First floor ceiling.
125mm dia. ducting in ceiling void.
Supply air valve in ceiling.
Side view of unit mounted on the wall in a cupboard.
(Note: The unit must be fixed to a suitable patress in upright position as shown to comply with safety regulations).
MVHR-DRAIN
Condensate drain, uninsulated drain pipe with 10º fall running to SVP.
2.1 Condensate Drain

1. The condensate must be discharged under a water level in a U-trap drainpipe or an alternative drain method which acts as an airlock.

2. This condensate discharge connection is suitable for 21.5mm dia. overflow pipe. Solvent cement should be used to make the joint.

3. If using a U-trap please ensure the U-trap has been filled to a suitable level of water to avoid any air locks.

4. If the condensation pipe is fitted in an unheated space the pipe should be insulated to prevent freezing.

Nuaire recommend MVHR-DRAIN be used as the primary condensate take-off. (see figure 5b and 5c.

![Figure 5a. Wet option. Condensate pipe connection to unit and a typical example of a "U" trap drainpipe.](image)

![Figure 5b. MVHR-DRAIN option. Condensate drain, uninsulated drain pipe with 10° fall running to SVP.](image)

![Figure 5c. IMPORTANT: When using a "T" Piece to connect the CONTRAP drainage and the MVHR drain pipework the MVHR drain must always be fitted before the "T" Piece to prevent condensate from feeding back into the MVHR system.](image)

2.2 Extract/input areas

The unit is designed to extract air from all wet rooms e.g. bathroom, kitchen, en-suite, utility room (with sink). WC's do not need to be ventilated if openable window is fitted.

Supply air should be to all habitable rooms e.g. bedrooms and lounge. Extract / input grilles should be adjustable valve types (not supplied).

External grilles to have a minimum free area of 12,250 sq mm.

2.3 Ducting

Before commencing ducting installation reference should be made to building regulations document "Domestic ventilation compliance guide". This document supports ADF2010 and details installation, testing and commissioning of all ventilation systems.

It is recommended that rigid ducting be used it all times.

Flexible ducting has a very high resistance and it is impossible to calculate how much resistance will be on a system if used.

If used the flexible ducting must be kept to a minimum and should always be pulled taut. A maximum of 500mm should be used on each leg.

To prevent condensation on the outside of the outside air inlet duct and the air outlet duct from the MRXBOX95-WHI, these ducts should be insulated.

Ducting must be installed in such a way that resistance to airflow is minimised. Bends should be kept to a minimum.

A minimum distance of 200mm between the appliance and any bends in ductwork is recommended.

Ideally 150mm diameter or 204 x 60mm rectangular ducting should be used. (Refer to dwelling design drawing, figure 7a and 7b on page 4 for further information).

Ducting joints must be sealed with silicone type sealant and shall be adequately and reliably fixed to the appliance.

2.4 Ventilation flow rates

Table 1. ADF2006 / 2010 - Extract ventilation rates

<table>
<thead>
<tr>
<th>Room</th>
<th>Min high rate</th>
<th>Min low rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchen</td>
<td>13 l/s</td>
<td></td>
</tr>
<tr>
<td>Utility room</td>
<td>8 l/s</td>
<td></td>
</tr>
<tr>
<td>Bathroom</td>
<td>8 l/s</td>
<td></td>
</tr>
<tr>
<td>Sanitary accommodation</td>
<td>6 l/s</td>
<td></td>
</tr>
</tbody>
</table>

Total extract rate should be at least the whole dwelling ventilation rate given in table 2.

Table 2. Whole dwelling ventilation rates

<table>
<thead>
<tr>
<th>Number of bedrooms in dwelling</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole dwelling ventilation rate l/s</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>29</td>
</tr>
</tbody>
</table>

Notes:

1. In addition, the minimum ventilation rate be should be not less than 0.3 l/s per m² of internal floor area. (This includes all floors, e.g. for a two-story building add the ground and first floor areas).

2. This is based on two occupants in the main bedroom and a single occupant in all other bedrooms. This should be used as the default value. If a greater level of occupancy is expected add 4 l/s per occupant.

IMPORTANT

Any air intake terminal MUST be installed in accordance with the appropriate regulation.

As a guide, the BSS440 series of British Standards deals with this issue and currently states that an air intake must be at a minimum distance of 300mm from a gas boiler balanced flue.

Installers are advised to be aware of the requirements of this standard when installing ‘through the wall’ supply air ducting.

Similarly, supply and extract air grilles should be at least 300mm apart.
2.5 Air permeability and infiltration

Is the uncontrolled exchange of air between inside and outside through cracks, porosity and other unintentional openings in the building. ADF2006 gives an allowance for this in both multi and single storey buildings, however ADF2010 has an allowance for multi storey only. Additionally ADF2010 only applies this allowance for dwellings leakier than 5 m³/(h.m²) at 50Pa. (See below).

2.6 ADF 2006 Ventilation calculations

Continuous supply and extract

Step 1: Determine the whole building ventilation rate from Table 2. Allow for infiltration by subtracting from this value:
- for multi-storey dwellings: 0.04 x gross internal volume of the dwelling heated space (m³);
- for single-storey dwellings: 0.06 x gross internal volume of the dwelling heated space (m³).

Step 2: Calculate the whole dwelling air extract rate at maximum operation by summing the individual room rates for ‘minimum high rate’ from Table 1.
(For sanitary accommodation only, as an alternative, the purge ventilation provisions given in ADF 2006 can be used where security is not an issue. In this case ‘minimum high extract rate’ for the sanitary accommodation should be omitted from the step 2 calculation).

Step 3: The required airflow rates are as follows:
- the maximum extract rate (e.g. boost) should be at least the greater of step 1 and step 2. Note that the maximum individual room extract rate should be at least those given in Table 1 for minimum high rate.
- the minimum air supply rate should be at least the whole building ventilation rate found in step 1.

2.7 ADF 2010 Ventilation calculations

Design of MVHR systems

The MVHR system has been sized for the winter period. Additional ventilation may be required during the warmer months and it has been assumed that the provisions for purge ventilation (e.g. openable windows) could be used.

Step 1: For any design air permeability, determine the whole dwelling ventilation supply rate from Table 2.
As an alternative where the design air permeability is intended to be leakier than (>) 5 m³/(h.m²) 50 Pa, allow for infiltration for all dwelling types by subtracting from the whole dwelling ventilation supply rate from Table 2. 0.04 x gross internal volume of the dwelling heated space (m³).

Step 2: Calculate the whole dwelling extract ventilation rate by summing the individual room rates for ‘minimum high rate’ from Table 1.
(For sanitary accommodation only, as an alternative, the purge ventilation provisions given in ADF 2010 can be used where security is not an issue. In this case ‘minimum high extract rate’ for the sanitary accommodation should be omitted from the step 2 calculation).

Step 3: The required airflow rates are as follows:
- the maximum whole dwelling extract ventilation rate (e.g. boost) should be at least the greater of step 1 and step 2. Note that the maximum individual room extract rate should be at least those given in Table 1 for minimum high rate.
- the minimum air supply rate should be at least the whole building ventilation rate found in step 1.

For Scotland refer to BRE Digest 398.

3.0 Dimensions
4.0 Ducting arrangements

Figure 7a. Typical ducted arrangement for a wall mounted unit using 125mm dia. ducting.

Figure 7b. Typical ducted arrangement for a wall mounted unit using rectangular 204 x 60mm ducting.

ALSO FROM NUAIRE -

New ductmaster range of thermal ducting, an all-in-one insulated ducting system.

(see installation document 671620).
5.0 Electrical Connection

For good EMC engineering practice, any sensor cables or switched live cables should not be placed within 50mm of other cables or on the same metal cable tray as other cables.

The four core cable from the mains power supply should be connected to a fixed wiring installation, via a fused isolator, in accordance with current IEE wiring regulations.

Electrical details:
Voltage: 240V 1ph 50Hz
Consumption: 75W 0.6 Amp
Fuse rating: 3 Amp

NOTE: This unit must be earthed.

5.1 Optional Connections

Ecosmart control (see figure 8)
The IDC plug-in connectors are provided for the connection of compatible sensors.

NOTE: Do not run the data cable in the same conduit as the mains cable and leave a 50mm separation with any power cables.

6.0 Optional controls
Customise MRXBOX95AB-WMI for enhanced performance. All supplied with pre-plugged 10m data cable and incorporates status LED.
MRXBOX95-PIR Passive infra-red detector
MRXBOX95-HUM Humidistat
MRXBOX95-RFI Remote fail indicator
7.0 Commissioning

The filters fitted inside the unit are protected with a plastic film. Prior to commissioning remove the covers (fig 13), take off the film and replace.

1. For the required air flow rates please refer to the design specification for the property, follow 2.4, or refer to building regulations ADF 2006/2010.
2. The unit is supplied with independent control for both normal and boost airflows. (see fig. II).
3. Correct commissioning is essential to ensure the ventilation air flowrates are met. It also ensures the unit is not over ventilating and causing excessive power consumption.
4. Commissioning should be carried out in accordance with building regulations document “Domestic ventilation compliance guide”. A calibrated moving vane anemometer and hood will be required to carry out commissioning.
5. Adjustment valves should be locked in place to prevent further adjustment.
6. Once commissioned the home owner / tenant should be informed that the unit should not be adjusted as it will have a detrimental effect on the indoor air quality and could result in condensation and mould growth. The label covering the control has an adhesive panel which should be removed post commissioning to prevent tampering.

7.1 Summertime boost facility
The unit has the ability to override both the trickle and boost speeds to operate the fan to maximum airflow. See wiring diagram for details of operating this facility.

8.0 Status Indication
The status of the unit is indicated by a series of LED’s on the front cover. The variants are listed below.

9.0 Maintenance/Cleaning

We recommend that the two G3 filters are inspected after 6 months, and replaced every 12 to 18 months.

The filters can be removed from the unit by removing the two filter covers on the front panel of the unit. Take hold of the two circular tabs either end of the filter covers and pull out.

The filter can now be extracted by pulling the removal loop on the front edge of the filter. Once the filters have been inspected return or replace them as necessary.

Inspect the heat exchanger every 5 years. Generally check for damage and security of components.

Figure 12. Removing the two filter covers on the front panel of the unit.

Figure 13. The filters can be removed by pulling on the black tab on the visible end of the filters.

10.0 Replacement of Parts
Should any component need replacing Nuaire keep extensive stocks for quick delivery. Ensure that the unit is electrically isolated, before carrying out any work.

Note: The supply cable must be replaced by an electrically competent person.

When ordering spare parts, please quote the serial number of the unit and the ARC number of the purchase if possible. (This information will be available on the fan label).

11.0 Warranty
The 5 year warranty starts from the day of delivery and includes parts and labour for the first year and parts only for the remaining 4 years. This warranty is conditional on planned maintenance being undertaken.

12.0 Service Enquiries
Nuaire can assist you in all aspects of service. Our Technical Support department will be happy to provide any assistance required.

Technical Support on 029 2085 8400
We declare that the machinery named below is intended to be assembled with other components to constitute a system of machinery. All parts except for moving parts requiring the correct installation of safety guards comply with the essential requirements of the Machinery Directive. The machinery shall not be put into service until the system has been declared to be in conformity with the provisions of the EC Machinery Directive.

Designation of machinery: MRXBOX95AB-WMI

Machinery Types: Mechanical Ventilation with Heat Recovery and Integral Frost Protection

Relevant EC Council Directives: 2006/42/EC (Machinery Directive)

Applied Harmonised Standards: EN50044-1, EN50044-2, EN6000-3-2, EN6000-3-3, EN60335-2-80

Applied National Standards: BS848 Parts I, 2, 2 and 5

Note: All standards used were current and valid at the date of signature.

DECLARATION OF CONFORMITY

We declare that the machinery named below is intended to be assembled with other components to constitute a system of machinery. All parts except for moving parts requiring the correct installation of safety guards comply with the essential requirements of the Machinery Directive. The machinery shall not be put into service until the system has been declared to be in conformity with the provisions of the EC Machinery Directive.

Designation of machinery: MRXBOX95AB-WMI

I & M Serial No.: 67639

Machinery Types: Mechanical Ventilation with Heat Recovery and Integral Frost Protection

Applied Harmonised Standards: EN50044-1, EN50044-2, EN6000-3-2, EN6000-3-3, EN60335-2-80

Basis of Self Attestation: Quality Assurance to BS EN ISO 9001

Note: All standards used were current and valid at the date of signature.

INFORMATION FOR SAFE INSTALLATION, OPERATION AND MAINTENANCE OF NUAIRE VENTILATION EQUIPMENT

To be read in conjunction with the relevant Product Documentation (see 2.1)

1.0 GENERAL

1.1 The equipment referred to in this Declaration of Incorporation is supplied by Nuaire to be assembled into a ventilation system which may or may not include additional components.

The entire system must be considered for safety purposes and it is the responsibility of the installer to ensure that all the equipment is installed in compliance with the manufacturer's recommendations and with due regard to current legislation and codes of practice.

2.0 INFORMATION SUPPLIED WITH THE EQUIPMENT

2.1 Each item of equipment is supplied with a set of documentation which provides the information required for the safe installation and maintenance of the equipment. This may be in the form of a Data sheet and/or Installation and Maintenance instruction.

2.2 Each unit has a rating plate attached to its outer casing. The rating plate provides essential data relating to the equipment such as serial number, unit code and electrical data. Any further data that may be required will be found in the documentation. If any item is unclear or more information is required, contact Nuaire.

2.3 Where warning labels or notices are attached to the unit the instructions given must be adhered to.

3.0 TRANSPORTATION, HANDLING AND STORAGE

3.1 Care must be taken at all times to prevent damage to the equipment. Note that shock to the unit may result in the balance of the impeller being affected.

3.2 When handling the equipment, care should be taken with corners and edges and that the weight distribution within the unit is considered. Lifting gear such as slings or ropes must be arranged so as not to bear on the casing.

3.3 Equipment stored on site prior to installation should be protected from the weather and slings taken to prevent ingress of contaminants.

4.0 OPERATIONAL LIMITS

4.1 It is important that the specified operational limits for the equipment are adhered to e.g. operational air temperature, air borne contaminants and unit orientation.

4.2 Where installation accessories are supplied with the specified equipment e.g. wall mounting brackets. They are to be used to support the equipment only. Other system components must have separate provision for support.

4.3 Flanges and connection spigots are provided for the purpose of joining to duct work systems. They must not be used to support the ductwork.

4.4 In the event of RF interference the fan may change speed. This is normal and will have no adverse effect on the fan. The speed will return to normal once the interference has subsided.

5.0 INSTALLATION REQUIREMENTS

In addition to the particular requirements given for the individual product, the following general requirements should be noted.

5.1 Where access to any part of equipment which moves or can become electrically live are not prevented by the equipment panels or by fixed installation detail (e.g. ducting), then guarding to the appropriate standard must be fitted.

5.2 The electrical installation of the equipment must comply with the requirements of the relevant local electrical safety regulations.

5.3 For EMC all control and sensor cables should not be placed within 90mm on the same metal cable tray as 230V switched live, lighting or power cables and any cables not intended for use with this product.

6.0 COMMISSIONING REQUIREMENTS

6.1 General pre-commissioning checks relevant to safe operation consist of the following:

- Ensure that no foreign bodies are present within the fan or casing.
- Check electrical safety, e.g. Insulation and earthing.
- Check guarding of system.
- Check operation of Isolators/Controls.
- Check fastenings for security.

6.2 Other commissioning requirements are given in the relevant product documentation.

7.0 OPERATIONAL REQUIREMENTS

7.1 Equipment access panels must be in place at all times during operation of the unit, and must be secured with the original fastenings.

7.2 If failure of the equipment occurs or is suspected then it should be taken out of service until a competent person can effect repair or examination. (Note that certain ranges of equipment are designed to detect and compensate for fan failure).

8.0 MAINTENANCE REQUIREMENTS

8.1 Specific maintenance requirements are given in the relevant product documentation.

8.2 It is important that the correct tools are used for the various tasks required.

8.3 If the access panels are to be removed for any reason the electrical supply to the unit must be isolated.

8.4 A minimum period of two minutes should be allowed after electrical disconnection before access panels are removed. This will allow the impeller to come to rest.

8.5 Care should be taken whenever since airflow generated at some other point in the system can cause the impeller to “windmill” even when power is not present.
Technical or commercial considerations may, from time to time, make it necessary to alter the design, performance and dimensions of equipment and the right is reserved to make such changes without prior notice.
The Electric Heating and Ventilation Association have developed this guidance and checklist document in partnership with the Residential Ventilation Association (a HEVAC association), BRE and EST.

NOTE: This guide and checklist has been superseded for dwellings assessed under ‘The Building Regulations 2010’, specifically SAP 2009 and Approved Documents L and F. Completion of this document is therefore only required for dwellings assessed by SAP 2005.

<table>
<thead>
<tr>
<th>Customer Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Name:</td>
</tr>
<tr>
<td>Address:</td>
</tr>
<tr>
<td>Telephone Number:</td>
</tr>
<tr>
<td>Date of Installation:</td>
</tr>
<tr>
<td>Name of Lead Contractor:</td>
</tr>
<tr>
<td>Design Project Number:</td>
</tr>
</tbody>
</table>

It should be noted that this guidance is not intended to replace product manufacturer installation instructions; it is a generic addition which defines good practice. Installers are advised to complete this form for each installation and keep a copy to provide to Building Control Officers in case requested.
Introduction

This document is to be used in support of the SAP Appendix Q scheme which provides tested performance values for MVHR products.

Note that all checklist items must be answered YES in order for the SAP Appendix Q test figures to be used in 'As built' SAP calculations. If any checklist items are answered NO then SAP default figures must be used. Systems must be designed by a manufacturer designer and sized correctly to qualify for SAP Appendix Q figures.

SECTION 1: INSTALLATION GUIDANCE

<table>
<thead>
<tr>
<th>1. Ductwork Installation</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have the ducts been installed with as little air resistance and leakages as possible (flexible ducts should be avoided)?</td>
<td>Yes, No or N/A</td>
</tr>
<tr>
<td>Note: Refer to HVCA DW/143 document ‘A Practical Guide to Ductwork Leakage Testing’ for detailed guidance on air tightness. Rigid plastic ducting is recommended and flexible duct should only be used in very short lengths and mainly just to connect the ductwork to the units/diffusers or to overcome particular obstructions.</td>
<td></td>
</tr>
<tr>
<td>If flexible ducting has been used, has it been pulled taut to minimise system resistance?</td>
<td></td>
</tr>
<tr>
<td>Has the number of duct bends been minimised to ensure adequate air flow and least resistance? Bends should have a minimum radius at least the same as the diameter of the ducting used?</td>
<td></td>
</tr>
<tr>
<td>Refer to Figure 1 if using flexible ducting</td>
<td></td>
</tr>
<tr>
<td>Have the fans and ducting placed in unheated voids been insulated to reduce the possibility of condensation forming (see notes below)?</td>
<td></td>
</tr>
<tr>
<td>Note: Ducts should be insulated with the equivalent of at least 25mm of insulating material with a thermal conductivity of 0.04W/mK. Where a duct rises vertically it may be necessary to fit a condensation trap in order to prevent backflow of any moisture in the product. Insulation should be applied to both warm and cold air ducts. Cold air ducts should be wrapped additionally with a vapour barrier outside the insulation. Ducts with cold air running in warm environments will condense on the outside of the duct.</td>
<td></td>
</tr>
<tr>
<td>Have recommended duct jointing collars and components been used to ensure appropriate duct performance (duct runs should be as air tight as possible)?</td>
<td></td>
</tr>
<tr>
<td>Note: All the joints should be sealed correctly either using duct tape or silicon.</td>
<td></td>
</tr>
</tbody>
</table>
2. Unit Fixing

<table>
<thead>
<tr>
<th>Question</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has the heat recovery unit been effectively insulated?</td>
<td></td>
</tr>
<tr>
<td>Note: If the unit is not pre-insulated then ensure additional insulation is installed around the unit to minimise heat loss</td>
<td></td>
</tr>
<tr>
<td>Has the heat recovery unit been fixed to a stable element of the building fabric (e.g. wall or floor) using manufacturer recommended/supplied fixing brackets?</td>
<td></td>
</tr>
<tr>
<td>Has the condensation drain been fitted and the pipe insulated?</td>
<td></td>
</tr>
<tr>
<td>Have approved acoustic/anti-vibration mountings been used?</td>
<td></td>
</tr>
<tr>
<td>Note: Special attention is needed to avoid transmission and stress to duct joints</td>
<td></td>
</tr>
<tr>
<td>Has the unit been installed in a position that will permit access for maintenance purposes?</td>
<td></td>
</tr>
<tr>
<td>Have all grilles or ductwork that penetrate the building’s air barrier, as identified in the construction drawings, been sealed to ensure continuity of the air barrier?</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2 Sample Mounting Positions

![Sample Mounting Positions](image)

Section 3: Electrical Connection

<table>
<thead>
<tr>
<th>Decision</th>
<th>Has the rating label been verified to establish suitability for the installation strategy and whether an earth is required (e.g. voltage, class I or II product status)?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Has a local isolator been provided to enable the unit to be isolated for maintenance purposes?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Has the unit been fused in accordance with its power rating?</td>
</tr>
</tbody>
</table>

SECTION 2: COMMISSIONING GUIDANCE
1. System Balancing & Calibration

<table>
<thead>
<tr>
<th>Question</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has the air flow been checked using a proprietary device such as an anemometer (recommended)?</td>
<td>N/A</td>
</tr>
<tr>
<td>Have the controls been set following a defined process? Refer to figure 3 flow diagram</td>
<td></td>
</tr>
<tr>
<td>Have all distribution grilles been locked where possible to minimise unapproved occupant adjustment?</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Ensure all external and internal windows and doors are closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Set fan speed using manufacturer data table</td>
</tr>
<tr>
<td>Step 3</td>
<td>Set normal daytime air flow on extract points starting at location furthest from unit</td>
</tr>
<tr>
<td>Step 4</td>
<td>Set normal daytime air flow on input points starting at location furthest from unit</td>
</tr>
<tr>
<td>Step 5</td>
<td>Set fan speed to boost and measure extract rates at each location, adjust fan speed setting as required to achieve required flow</td>
</tr>
</tbody>
</table>
2. Handover and Control/Maintenance Advice

<table>
<thead>
<tr>
<th>Question</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has the customer been supplied with suitable documentation detailing maintenance and operational requirements?</td>
<td></td>
</tr>
<tr>
<td>Has the customer been advised that opening windows is not recommended during normal use in order to ensure the energy efficient operation and performance of the balanced system?</td>
<td></td>
</tr>
<tr>
<td>Has the customer been advised not to seal natural air flows from room to room (e.g. avoid door seals and thick pile carpets)</td>
<td></td>
</tr>
<tr>
<td>Has the customer been advised not to alter settings post-commissioning?</td>
<td></td>
</tr>
<tr>
<td>Has the customer been advised to clean the filters as explained in the manufacturer’s instructions?</td>
<td></td>
</tr>
</tbody>
</table>